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1. Introduction

Formulating string/M theory in a time-dependent background remains an elusive problem.

The only observables in string theory are S-matrix elements, this is certainly true in the

perturbative formulation of string theory where conformal symmetry on the world-sheet

plays the role of the guiding principle in constructing consistent asymptotically flat back-

ground, it is also true in a nonperturbative formulation of M theory, the matrix theory,

where scattering amplitudes among D0-branes and their bound states are assumed to ex-

ist. However, S-matrix does not exist for most of interesting cosmological backgrounds, it

certainly does not exist for our universe. Perhaps, a reformulation of observables is the key

to extending string/M theory to include time-dependent backgrounds.

The matrix model proposed by Craps et al. is an attempt to formulate string theory

in a time-dependent background [1], the metric in this model depends on a null coordinate

and in the Einstein frame it exhibits a null singularity at the “big bang” point. This

model was subsequently generalized to a class of more general backgrounds in [2], and to

a class of even more general backgrounds in [3, 4], and [5] (a concrete model in this class

was previously studied in detail in [6]). For related work on time-dependent backgrounds,

see [7 – 9], and [10].

So far, except for the decoupling argument presented in [1], there has been no indepen-

dent check on the correctness of the matrix proposal. The effective action of a D0-brane

in the background generated by another D0-brane was derived in [11], where it is noticed

that the usual double expansion in the relative velocity v and the inverse of the relative
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separation b fails when time is sufficiently close to the big bang point. Although there is no

definition of scattering amplitude between two D0-branes too, we believed that it makes

sense to talk about the effective action at later times. In the present work we shall make

the usual one loop calculation to see whether we can obtain the small velocity expansion

of [11]. To our surprise, we shall see that the v2 term in the one-loop calculation does not

vanish and is complex. This is a rather astonishing result.

We are faced with two possibilities, our result may indicate that the matrix proposal

is incorrect, or it may signal an instability of the two D0-brane system at later times, since

the v2 term in the effective action is complex. However, we can not locate a physical reason

for this instability at present.

The layout of this paper is as follows. We use the background field method of [13]

to write down a gauge-fixed action and expand it to the second order in section 2. We

compute the one-loop contribution of the off-diagonal fluctuations to the effective action

of two D0-branes in section 3 when the relative velocity vanishes, and find it equal to

zero. The v2 term in the one-loop contribution is calculated in section 4, and we find a

non-vanishing complex term. We show that the small velocity expansion makes sense in

the flat matrix theory and the v2 terms cancel in appendix A. Appendix B is devoted to

discussions on the propagators.

2. Basic setup

In [1], the authors consider a flat type IIA background, with a null linear dilaton, φ =

−Qx+. The Einstein metric has a curvature singularity at x+ = −∞. A matrix string ac-

tion is proposed in [1] to describe the theory nonperturbatively. The type IIA background

can be obtained by compactifying M theory on a circle, along the ninth direction. In [2],

the background is lifted to M theory, and the corresponding matrix theory is BFSS like [12].

D0 brane interaction is found out by considering the shock wave solution in [11]. To get

the shock wave solution, the authors have compactified the ninth direction and averaged

the source over that direction. The Routhian of a graviton in the presence of another is
1
2p−

∑∞
n=1 cnv

2[κ2
11e
−2Qx+

p′−v
2r−6]n−1, where p− is the null momentum of the test parti-

cle, (2π)2RR′p′− is that of the source particle, and cn is some fixed numerical coefficient,

especially, c1 = 1, c2 = 1
8π2 . R is the radius of the M-theory and R′ is that of 9th direc-

tion. From the form of the Routhian, one can see that there is no static potential between

two gravitons, and there is no v2 correction, either. In this approach, we are expanding

the effective action in terms of κ2
11e
−2Qx+

p′−v
2r−6. Note that κ2 =

κ2
11e
−2Qx+

2πR′ =
κ2

11g
2
s

2πR′ is

just the physical gravitational constant in IIA string theory. Therefore it is clear that the

expansion is a supergravity perturbation.

In the present paper, we will just consider the case of two D0 branes, and hence p− = 1
R ,

and p′− = 1
R2πR2πR′ . We shall in this paper work in the scheme of [2], and use the matrix

model action instead of the matrix string action. We compute the effective potential of two

D0 branes with separation both in the ninth direction and in the transverse directions. To

compare our matrix model calculation with the supergravity result in [11], the separation

in the ninth direction should be integrated out in the end.
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The matrix theory action includes the bosonic part SB and fermionic part SF . Set the

Planck scale lp to 1, the two parts can be written as

SB =

∫
dtTr{ 1

2R
(DtX

i)
2

+
1

2R
e−2Qt(DτX

9)
2

+
R

4
e2Qt[Xi, Xj ]

2
+
R

2
[X9, Xj ]

2},

SF =

∫
dtTr{iθTDtθ −ReQtθTγi[Xi, θ]−RθTγ9[X9, θ]}, (2.1)

where i, j = 1, . . . 8, runs over the eight transverse directions, and Dt = ∂t + i[A, is the

covariant derivative. Rescale t → (21/3R)−1t,Q → 21/3RQ and Xµ → 21/3Xµ to absorb

the R in the action, we have

SB =

∫
dtTr{(DtX

i)
2

+ e−2Qt(DtX
9)

2
+

1

2
e2Qt[Xi, Xj ]

2
+ [X9, Xj ]

2},

SF =

∫
dtTr{iθTDtθ − eQtθTγi[Xi, θ]− θTγ9[X9, θ]}. (2.2)

To calculate the effective potential, we use the background field method [13]. Expand

the action (2.2) around the classical background field Bµ by setting Xµ = Bµ + Y µ,

µ = 1, 2 · · · 9. The fluctuation part of the action is a sum of five terms

S = Si + S9 + SA + Sfermi + Sghost. (2.3)

In the following, we will determine the explicit form of each term. It is convenient to choose

the gauge

G ≡ ∂tA− ie2Qt[Bi, Xi]− i[B9, X9] = 0. (2.4)

In the standard gauge fixing procedure, we need to insert

1 = ∆fp

∫
[dξ]δ(G − f(t)g(t)) (2.5)

into the path integral, where ξ is a gauge parameter, f(t) is chosen to be f(t) = eQt for

later convenience, g(t) is any function. The path integral is independent of the choice of

g(t), so we can multiply the path integral by
∫

[dg(t)]e−ig(t)
2
. ∆fp is given by the variation

of G under gauge transformation, independent of g(t). Thus by changing the order of

integration, we can integrate out g(t), and get a gauge fixing term

Sgf = −e−2QtG2. (2.6)

So the bosonic action of the fluctuation is

SY i =

∫
dtTr{(∂tY i)

2
+ e2Qt([Bi, Y j]

2
+ e−2Qt[B9, Y j ]2 + [Bi, Y i]

2

+2[Bi, Y j ][Y i, Y j] +
1

2
[Y i, Y j]

2
)},

SY 9 =

∫
dte−2QtTr{(∂tY 9)

2
+ e2Qt([Bi, Y 9]

2
+ e−2Qt[B9, Y 9]

2

+2[Bi, Y 9][Y i, Y 9] + 2[Y i, B9][Y i, Y 9] + [Y i, Y 9]
2
)},
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SA =

∫
dtTr{−e−2Qt(∂tA)2 − e−2Qt[A,B9]

2 − [A,Bi]
2

+4i∂tB
i[A, Y i] + 4ie−2Qt∂tB

9[A, Y 9]− 4Qie−2QtB9[A, Y 9]

+2i∂tY
i[A, Y i]− 2[A,Bi][A, Y i]− [A, Y i]

2

+2ie−2Qt∂tY
9[A, Y 9]− 2e−2Qt[A,B9][A, Y 9]− e−2Qt[A, Y 9]

2}. (2.7)

Since we are considering two D0-branes, the Yang-Mills fields are just 2 × 2 matrix.

We will choose the background to be diagonal,

B1 =
vt

2
σ3, B

2 =
b

2
σ3, B

9 =
c

2
σ3. (2.8)

The background for A and other transverse directions are chosen to be zero. This cor-

responds to, in comoving coordinate, two zero-branes moving towards each other with

relative velocity v in the x1 direction, transverse separation b in the x2 direction and c in

the x9 direction. Write the matrix in terms of U(2) generators,

Y i =
1

2
(Y0

i12 + Ya
iσa), Y 9 =

1

2
eQt(Y0

912 + Ya
9σa),

A =
1

2
eQt(A012 +Aaσ

a), θ =
1

2
(θ012 + θaσ

a). (2.9)

where a = 1, 2, 3. The 0 components in this decomposition describe the free motion of the

center of mass and will not be written explicitly in the following. Then up to quadratic

terms, the actions for the fluctuations are

Si =
1

2

∫
dt{Y1

i(−∂t2 − b2e2Qt − v2t2e2Qt − c2)Y1
i

+Y2
i(−∂t2 − b2e2Qt − v2t2e2Qt − c2)Y2

i

+Y3
i(−∂t2)Y3

i},

S9 =
1

2

∫
dt{Y1

9(−∂t2 +Q2 − b2e2Qt − v2t2e2Qt − c2)Y1
9

+Y2
9(−∂t2 +Q2 − b2e2Qt − v2t2e2Qt − c2)Y2

9

+Y3
9(−∂t2 +Q2)Y3

9},

SA = −1

2

∫
dt{A1(−∂t2 +Q2 − b2e2Qt − v2t2e2Qt − c2)A1

+A2(−∂t2 +Q2 − b2e2Qt − v2t2e2Qt − c2)A2

+A3(−∂t2 +Q2)A3

+4veQt(A1Y2
1 −A2Y1

1)− 4Qc(A1Y2
9 −A2Y1

9)}. (2.10)

Define

Y 9
2 =

1√
2

(A+
1 +A−1 ), A1 =

1

i
√

2
(A+

1 −A−1 ),

Y 9
1 =

1√
2

(A+
2 +A−2 ), A2 =

1

i
√

2
(A−2 −A+

2 ). (2.11)
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Then the actions for A and X9 become

SA+ =
1

2

∫
dt{A+

1(−∂t2 +Q2 − b2e2Qt − v2t2e2Qt − c2 − i2Qc)A+
1

+A+
2(−∂t2 +Q2 − b2e2Qt − v2t2e2Qt − c2 − i2Qc)A+

2

+A3(−∂t2 +Q2)A3 + i2
√

2veQt[(A+
1 −A−1)Y2

1 + (A+
2 −A−2)Y1

1]},

SA− =
1

2

∫
dt{A−1(−∂t2 +Q2 − b2e2Qt − v2t2e2Qt − c2 + i2Qc)A−1

+A−2(−∂t2 +Q2 − b2e2Qt − v2t2e2Qt − c2 + i2Qc)A−2

+Y3
9(−∂t2 +Q2)Y3

9}. (2.12)

Define new fermionic fields,

θ+ =
1√
2

(θ1 + iθ2), θ− =
1√
2

(θ1 − iθ2). (2.13)

Then the action is

Sf =

∫
dtθT−(i∂t + vteQtγ1 + beQtγ2 + cγ9)θ+ +

1

2
θ3
T (i∂t)θ3. (2.14)

The ghost action is determined by the infinitesimal gauge transformation of G,

Sg =

∫
dtC1

∗(−∂2
t − b2e2Qt − v2t2e2Qt − c2)C1 +C2

∗(−∂2
t − b2e2Qt − v2t2e2Qt − c2)C2

+C3
∗(−∂2

t )C3. (2.15)

Before doing any calculation, we can see that the fluctuation action for Xµ
3 is indepen-

dent of the separation, and hence has nothing to do with the interaction of the two zero

branes. We will not consider them in the following.

3. Static case

First we will analyze the situation when v = 0. This corresponds to two zero-branes static

in the comoving coordinates. To calculate the one loop interaction, we need to integrate

out the quadratic fluctuation, which can be written in the form of determinants,

det−
1
2 (−∂2

t − b2e2Qt − c2), for Y1,2
i, i = 1, . . . 8,

det−
1
2 (−∂2

t +Q2 − b2e2Qt − c2 − i2Qc), for A+
1, A

+
2,

det−
1
2 (−∂2

t +Q2 − b2e2Qt − c2 + i2Qc), for A−1, A
−

2,

det(−∂2
t − b2e2Qt − c2), for C1,2,

det(i∂t + beQtγ2 + cγ9), for θ+. (3.1)

We use Schwinger proper time formalism to calculate the determinants. For any Hermitian

operator ∆, the determinant is represented by

δ ≡ ln(det ∆) = −
∫

0

∞ds
s
Tre−i∆s. (3.2)

– 5 –
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Thus we need to calculate the heat kernel, K(t′, t; s) ≡< t′|e−i∆s|t >. K(t, t′; s) satisfies

the differential equation and the boundary condition,

i∂sK(t′, t; s) = ∆K(t′, t; s),

K(t′, t; 0) = δ(t− t′). (3.3)

For the first determinant in (3.1), ∆ = −∂2
t − b2e2Qt − c2. To solve (3.3), we first solve the

static shrödinger equation

λyλ(t) = (−∂2
t − b2e2Qt − c2)yλ(t). (3.4)

The two linearly independent solutions of (3.4) are Bessel functions

J±κ(x), for κ /∈ Z, or Jκ(x), Yκ(x), for κ ∈ Z, (3.5)

where x = b
Qe

Qt, −(Qκ)2 = λ + c2. Yn(x) has singlarity at x = 0, and are not in

consideration. Since the operator ∆ is hermitian, λ is real, and κ is either real or pure

imaginary.

Using an integral of Bessel function (eq. 6.574.2 of [15])

∫

0

∞dx
x
Jν(x)Jµ(x) =

2 sinπ(µ−ν2 )

π(µ+ ν)(µ− ν)
, (3.6)

an orthonormal basis can be constructed,

yω(t) =

√
Qω

2 sinh(πω)
[Jiω(x) + J−iω(x)], ω > 0,

fn(t) ≡
√

4QnJ2n(x), n = 1, 2, . . . (3.7)

To check the orthogonality,

∫ ∞

−∞
dtyω(t)y∗ω′(t) =

Qω

2 sinh(πω)

∫

0

∞ dx

Qx
[Jiω+ε(x) + J−iω+ε(x)][J−iω′+ε(x) + Jiω′+ε(x)]

=
ω

sinh(πω)
{sinh[π2 (ω + ω′)]

(ω + ω′)
ε

π[(ω−ω
′

2 )2 + ε2]
+

sinh[π2 (ω − ω′)]
(ω − ω′)

ε

π[(ω+ω′
2 )2 + ε2]

}

= δ(ω − ω′) + δ(ω + ω′)

= δ(ω − ω′),∫ ∞

−∞
dtfn(t)fm(t) = δn,m,

∫ ∞

−∞
dtfω(t)fn(t) ∝ sin(nπ) = 0. (3.8)

We have deformed ±iω by a small real part, ±iω → ±iω + ε and used the identity δ(z) =

limε→0
ε

π(z2+ε2)
. In the fourth line ω > 0 is taken into account.
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To check the completeness, we will need to prove that all Jκ(x),<κ > 0, κ 6= 2n, n ∈ Z+

can be expanded in the basis. Define

J̃κ(ω) =

∫

0

∞
dty∗ω(t)Jκ(x), J̃nκ =

∫

0

∞
dtfn(t)Jκ(x),

˜̃Jκ(x) =

∫

0

∞
dωJ̃κ(ω)yω(t) +

∞∑

n=1

J̃nκ fn(t). (3.9)

Using (3.6), one finds that

J̃κ(ω) =

√
ω

2Q sinh(πω)

4 cosh(πω2 ) sin(πκ2 )

π(κ2 + ω2)
, J̃nκ = 4

√
n

Q

(−1)n sin(π κ2 )

π(κ2 − 4n2)
. (3.10)

Hence, ∫

0

∞
dωJ̃κ(ω)yω(t) =

∫ ∞

−∞
dω

sin(πκ2 )ωJiω+ε(x)

π sinh(πω2 )(κ2 + ω2)
. (3.11)

The large order behavior of the Bessel function is

Jµ(x) ∼ eµ+µ ln x
2
−(µ+ 1

2
) lnµ. (3.12)

Then the integral (3.11) can be evaluated by closing the contour in the lower half plane.

Simple poles are at ω = −2ni,−iκ.

∫

0

∞
dωJ̃κ(ω)yω(t) = Jκ(x)− 8

π
sin(

πκ

2
)

∞∑

n=1

(−1)n
n

κ2 − 4n2
J2n(x)

= Jκ(x)−
∞∑

n=1

J̃nκ fn(t), (3.13)

Therefore,
˜̃Jκ(x) = Jκ(x). (3.14)

When κ = ±iω + ε, the above equations still hold. Then the other linear combination of

J±ω(x), Jiω(x)−J−iω(x) can be also expanded in terms of the basis (3.7), and so are not

included in the basis. In fact, we have shown that any normalizable eigenfunction can be

expanded in terms of this basis, which is enough to guarantee that the basis is complete.

(The completeness of this set of the eigenfunctions was discussed previously in [16].)

Then the heat kernel can be expanded in terms the orthonormal basis,

K(t′, t; s) =

∫

0

∞
dωyω(t′)∗yω(t)e−i[(Qω)2−c2]s +

∞∑

n=1

fn(t′)fn(t)ei[(2Qn)2+c2]s. (3.15)

3.1 The bosonic effective potential

Having found out the heat kernel, it is straight forward to write down the determinant

explicitly, by δi = −
∫

0
∞ ds

s

∫∞
−∞dtK(t, t; s). The trace in (3.2) is now an integral over

t. In order to compare with the result obtained on the supergravity side [11], we need

to compactify the 9-direction and smear the result over the circle. This is equivalent to

– 7 –
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sum the images in the covering space and then average over the compactified circle. On

the matrix theory side, we need to calculate the one loop effective potential of two D0-

branes separated also by c in the x9 direction, integrate over c and then divide by 2πR′.
This procedure is expected to give us the result that is to be compared with our earlier

result in [11]. Here R′ is the radius of X9. Now there are altogether four integrals in our

calculation of determinant, the integral over t, s, ω, and c. We can first do the the integral

over c. Then the smeared determinant becomes

δi =
−1

2
√
−πiR′

∫

0

∞ ds

s
3
2

∫ ∞

−∞
dt{
∫ ∞

−∞
dω

Qω

2 sinh(πω)
Jiω(x)[Jiω(x) + J−iω(x)]e−i(Qω)2s

+
∞∑

n=1

4QnJ2
2n(x)ei(2Qn)2s}

=
−1

2
√
−πiR′

∫

0

∞ ds

s
3
2

∫ ∞

−∞
dt{
∫ ∞

−∞
dω

Qω

2 sinh(πω)
Jiω(x)[Jiω(x) + J−iω(x)]

×[1− i(Qω)2s+ · · ·] +
∞∑

n=1

4QnJ2
2n(x)[1 + i(2Qn)2s+ · · ·]}. (3.16)

Here we have extended the integral range of ω from (0,∞) to (−∞,∞). We use the

notation ±i = e
±πi

2 ,
√
±i = e±

π
4
i, and ln(i) = πi

2 . We have rewritten the exponential in

the form of power series. Using the large order behavior of Bessel function, we have

ω2n+1

sinh(πω)
Jiω(x)J−iω(x) ∼ ω2n+1

sinh(πω)
exp[−2iω ln i− lnω] =

ω2neπω

sinh(πω)
,

ω2n+1

sinh(πω)
J2
iω(x) ∼ ω2n+1

sinh(πω)
exp[2iω + 2iω ln

x

2
− 2iω lnω − 2iω ln i− lnω]

=
ω2n exp[2iω + 2iω ln x

2 − 2iω lnω + πω]

sinh(πω)
. (3.17)

Close the contour in the lower half plane, we can see that the integral of each term propor-

tional to J2
iω(x) at the infinity is zero. Because of the third line of (3.17), we will meet a

divergence at infinity in each term proportional to Jiω(x)J−iω(x). Note that this divergence

is independent of the x, and therefore can be subtracted. Then
∫ ∞

−∞
dω

Qω

2 sinh(πω)
Jiω(x)[Jiω(x) + J−iω(x)][1 − i(Qω)2s+ · · ·],

= −4QnJ2
2n(x)[1 + i(2Qn)2s+ · · ·]. (3.18)

The above just cancels with the summation in (3.16) term by term. Although we are not

sure about the convergence of the expansion, the exact cancelation of each term between

the integral (3.18) and the summation in (3.16) has shown that δi = 0 up to a physical

irrelevant constant. So the bosons coming from the i directions give no contribution to the

effective potential.

For the second and the third determinants in (3.1), The heat kernel becomes

K+(t′, t; s) =

∫ ∞

0
dωy∗ω(x′)yω(x)e−i[(Qω)2−(c+iQ)2]s +

∞∑

n=1

fn(t′)fn(t)ei[(2Qn)2+(c+iQ)2]s,

– 8 –
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K−(t′, t; s) =

∫

0

∞
dωy∗ω(x′)yω(x)e−i[(Qω)2−(c−iQ)2]s +

∞∑

n=1

fn(t′)fn(t)ei[(2Qn)2+(c−iQ)2]s.(3.19)

Then take the same procedure as in eqs. (3.16), (3.17), and (3.18), we will find that the

bosons coming from the gauge field and X9 give no contribution to the effective potential,

either.

The ghost determinant is the same with that of X i, and hence give the same result

except for a minus sign.

In a word, we find that there is no static potential coming from the bosons.

3.2 The fermionic effective potential

In the fermionic sector, there are 16 degrees of freedom for each SU(2) index. Since there

are only three gamma matrix relevant here, we can choose a basis to make the gamma

matrix and the field block diagonal,

γ1 = σ2 ⊗ 18, γ2 = σ3 ⊗ 18, γ9 = σ1 ⊗ 18. (3.20)

Define

Kαβ(t′, t; s) =< t′| exp(−i∆f (t̂)s)|t >αβ,
where ∆f = i∂t + beQtγ2 + cγ9, α, β = 1, 2 label the two 8 × 8 block matrix. Then

Kαβ(t′, t; s) satisfies the following differential equation and initial condition

i∂sKαβ(t′, t; s) = (∆f (t̂))αρKρβ(t′, t; s), Kαβ(t′, t; 0) = δαβδ(t
′ − t). (3.21)

To find the solution, we write
(
K1β(t′, t; s)
K2β(t′, t; s)

)
=

∫ ∞

−∞
dλKβ(t′, t;λ)e−iλs.

In the following, we just write Kβ for short. Then from (3.21), Kβ satisfy the following

differential equations

(i∂t + beQt − λ)K1β + cK2β = 0,

(i∂t − beQt − λ)K2β + cK1β = 0. (3.22)

These equations are equivalent to

cK2β = −(i∂t + beQt − λ)K1β ,

(∂2
t + b2e2Qt + c2 − λ2 + 2iλ∂t − iQbeQt)K1β = 0. (3.23)

Denote λ/(Q) by ω, and c/Q by c′. Take the ansatz K1β = f(w, c′, t′)ψ(ω, c′, t). Then

f(ω, c′, t′) factorize and the equation for ψ(ω, c′, t) has two linearly independent solutions,

x(−1/2−iω)M1/2,ic′(−2ix) and x(−1/2−iω)M1/2,−ic′(−2ix). Where Mλ,µ(x) is a Whittaker

function. A general solution for (3.23) is

Kβ = f(ω, c′, t′)x(−1/2−iω)

(
M1/2,ic′(−2ix)

M−1/2,ic′(−2ix)

)

+g(ω, c′, t′)x(−1/2−iω)

(
M1/2,−ic′(−2ix)

−M−1/2,−ic′(−2ix)

)
, (3.24)
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where f(ω, c′, t′) and g(ω, c′, t′) are chosen to satisfy the initial condition. Then

Kα1(t′, t; s) =

∫ ∞

−∞
dωQ(

x

x′
)−iω

exp(−iQωs)
−4i
√
xx′

[M−1/2,−ic′(−2ix′)

(
M1/2,ic′(−2ix)

M−1/2,ic′(−2ix)

)

+M−1/2,ic′(−2ix′)

(
M1/2,−ic′(−2ix)

−M−1/2,−ic′(−2ix)

)
],

Kα2(t′, t; s) =

∫ ∞

−∞
dωQ(

x

x′
)−iω

exp(−iQωs)
−4i
√
xx′

[M1/2,−ic′(−2ix′)

(
M1/2,ic′(−2ix)

M−1/2,ic′(−2ix)

)

−M1/2,ic′(−2ix′)

(
M1/2,−ic′(−2ix)

−M−1/2,−ic′(−2ix)

)
]. (3.25)

When s = 0, ω can be integrated out and gives δ(t− t′). Then

Kαβ(t′, t; 0) = δαβδ(t− t′)
D(x, x′, c′)

−4i
√
xx′

,

where

D(x, x′, c′) ≡M1/2,ic′(−2ix)M−1/2,−ic′(−2ix′) +M1/2,−ic′(−2ix)M−1/2,ic′(−2ix′). (3.26)

In appendix B, we will prove that D(x, x, c′) = −4ix. So (3.25) satisfies the initial condition

in (3.21).

Finally,

δf = −
∫ ∞

−∞

dc

2πR′

∫ ∞

0

ds

s
trKα,β(t, t′; s)

= −
∫ ∞

−∞
dt

∫ ∞

−∞

dc

2πR′

∫ ∞

0

ds

s

∫ ∞

−∞
dωQ exp[−iQωs]

×D−1[M1/2,ic′(−2ix)M−1/2,−ic′(−2ix) +M1/2,−ic′(−2ix)M−1/2,ic′(−2ix)]

= −
∫ ∞

−∞
dt

∫ ∞

−∞

dc

2πR′

∫ ∞

0

ds

s

∫ ∞

−∞
dωQ exp[−iQωs] (3.27)

The tr in the first line means a trace of the 2×2 matrix and an integral over t. The integral

is divergent but is independent of b and α. In fact, this is just the phase shift generated

by a free operator i ddt . Regularize the phase shift by subtracting −
∫

0
∞ ds

s tre
−iH0s, H0 is

the Lagrange for free fermions. We can see that the fermions give no contribution to the

effective potential.

Then we can draw the conclusion that there is no static effective potential.

4. Effective interaction at the order v2

Now we are going to investigate the case when there is a small relative velocity between the

zero branes. Since it is difficult to compute the determinants directly, we will perturbatively

expand around v = 0.

From (2.10), (2.12), (2.14) and (2.15), we can see that the only possible terms term

odd in v in the perturbation series come from the the fermionic action (2.14). These terms

vanish because the trace of odd number of Gamma matrix is zero.We shall in this section

calculate various v2 terms.
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Denote the v2 terms coming from the first order bosonic contribution by b1, the second

order bosonic contribution by b2, the first order ghost contribution by g1, and the second

order fermionic contribution by f2. Then,

b1 = −i
∫ ∞

−∞

dc

2πR′

∫ ∞

−∞
dt

1

2
v2t2e2Qt[〈Y i

1 (t)Y i
1 (t)〉+ 〈Y i

2 (t)Y i
2 (t)〉,

+〈A+
1 (t)A+

1 (t)〉+ 〈A+
2 (t)A+

2 (t)〉+ 〈A−1 (t)A−1 (t)〉+ 〈A−2 (t)A−2 (t)〉],

g1 = i

∫ ∞

−∞

dc

2πR′

∫ ∞

−∞
dtv2t2e2Qt[〈C1(t)C∗1 (t)〉+ 〈C2(t)C∗2 (t)〉],

b2 =
1

2

∫ ∞

−∞

dc

2πR′

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2(v

√
2)2eQt1eQt2

×{[< A+
1(t1)A+

1(t2) > + < A−2(t1)A−2(t2) >] < Y2
1(t1)Y2

1(t2) >

+[< A−1(t1)A−1(t2) > + < A+
2(t1)A+

2(t2) >] < Y1
1(t1)Y1

1(t2) >},

f2 =
1

2

∫ ∞

−∞

dc

2πR′

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2v

2t1t2e
Qt1eQt2

×Tr[γ1Gf (t1, t2)γ1Gf (t2, t1)]. (4.1)

Since we are only interested in the effective potential, we do not have to do all the

integrals in the second order contributions. Define t1 = t+ 1
2τ, t2 = t− 1

2τ , integrate out

τ and c, we are left with an integral of t, which combined with the first order perturbation,

will give the effective potential to v2 order. In appendix A, we will show how this procedure

is carried out when the background is flat. We hope that this procedure also goes through

here, as we shall see, there is a problem arising at this order.

The propagator < Y i
a (t2)Y i

a (t1) >≡ Gi(t2, t1), satisfies the differential equation

(−∂2
t1 − b2e2Qt1 − c2)Gi(t2, t1) = iδ(t1 − t2), (4.2)

and is related to the heat kernel by Gi(t2, t1) = −
∫

0
∞
dsK(t2, t1; s).

Gi(t2, t1) = −
∫

0

∞
dsK(t2, t1; s)

= i

∫ ∞

−∞
dω

Qω

2 sinh(πω)
Jiω(x1)[J−iw(x2) + Jiω(x2)]/[(Qω)2 − c2 − iε]

+i

∞∑

n=1

4QnJ2n(x1)J2n(x2)/[−(2Qn)2 − c2 − iε]

= −θ(t1 − t2)
π

2Q sinh(πc′)
J−ic′(x2)[Jic′(x1) + J−ic′(x1)]

−θ(t2 − t1)
π

2Q sinh(πc′)
J−ic′(x1)[Jic′(x2) + J−ic′(x2)]. (4.3)

From the second line of (4.3) to the forth line, we have integrated ω by contour integral, and

assumed c′ > 0. When c′ < 0, just replace c′ with −c′. Using the asymptotical behavior

of Bessel function at large order (3.12), we see that Jiω(x1)J−iω(x2) ∼ eiQω(t1−t2)+πω−lnω.

When t1 − t2 > 0, we should close the contour in the upper half plane, and otherwise the

lower half plane. The poles at ±2ni cancels with the sum in the third line of (4.3). So
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only the poles at ±(c+ iε) contribute to the propagator. It is difficult to obtain a compact

result. We will take a b→∞ limit to obtain the asymptotic behavior. Or equivalently, we

let b/(Q) to be of order 1, and let t→∞ .

Gi(t2, t1) ∼ −θ(t1 − t2)
cos(x2 + 1

2 iπc
′ − π

4 ) cos(x1 − π
4 )

Q
√
x1x2 sinh(πc

′
2 )

+ (t1 ↔ t2). (4.4)

We use Gi(t, t) to calculate b1, which becomes

Gi(t, t) ∼ −
[sin(2x) + 1] coth(πc

′
2 )

2Qx
− i cos(2x)

2Qx
. (4.5)

Define

G+(1, 2) = < A+
1(t1)A+

1(t2) >=< A+
2(t1)A+

2(t2) >,

G−(1, 2) = < A−1(t1)A−1(t2) >=< A−2(t1)A−2(t2) > . (4.6)

They satisfy the following differential equations

(−∂2
t1 − b2e2Qt1 − (c+ iQ)2)G+(t2, t1) = iδ(t1 − t2),

(−∂2
t1 − b2e2Qt1 − (c− iQ)2)G−(t2, t1) = iδ(t1 − t2). (4.7)

The solution G+ can also be obtained from the heat kernel.

G+(t2, t1) = −
∫

0

∞
dsK+(t2, t1; s)

=

∫ ∞

0
dω
iQω[Jiω(x1) + J−iω(x1)][Jiω(x2) + J−iω(x2)]

2 sinh(πω)[(Qω)2 − (c+ iQ)2]

+i

∞∑

n=1

4QnJ2n(x1)J2n(x2)

−(2Qn)2 − (c+ iQ)2

= − θ(t1 − t2)π

2Q sinh[π(c′ + i)]
J−i(c′+i)(x2)[Ji(c′+i)(x1) + J−i(c′+i)(x1)]

− θ(t2 − t1)π

2Q sinh[π(c′ + i)]
J−i(c′+i)(x1)[Ji(c′+i)(x2) + J−i(c′+i)(x2)]

∼ iθ(t1 − t2)
cos[x2 + 1

2 iπ(c′ + i)− π
4 ] cos(x1 − π

4 )

Q
√
x1x2 cosh(πc

′
2 )

+ (t1 ↔ t2), (4.8)

and

G+(t, t) ∼ − [sin(2x) + 1] tanh(πc
′

2 )

2Qx
− i cos(2x)

2Qx
. (4.9)

To get G−, just replace c′ by −c′ in (4.8).

Then the first order contribution adds up to

−iV1 = −i
∫ ∞

−∞

dc

2πR′
v2t2e2Qt[6Gi(t, t) +G+(t, t) +G−(t, t)]

∼ i3v2t2eQt[1 + sin(2x)]

b

∫

0

∞Qdc′

πR′
coth(

πc′

2
)− 4v2t2eQt cos(2x)

b

∫

0

∞Qdc′

πR′

∼ i3v2t2eQt

b

∫

0

∞Qdc′

πR′
coth(

πc′

2
). (4.10)

– 12 –



J
H
E
P
0
8
(
2
0
0
6
)
0
8
9

In the last step, we have omitted the trigonometric functions because they are periodic

functions and fluctuate violently at large argument. The integral of c′ seems to give a

divergence, but this is just caused by our using the asymptotic expansion of the bessel

function. That step hides the depression of the large c′. In fact, from the large order

behavior (3.17), we can see that there is indeed no divergence in the c′. Hereafter, we can

just put the this divergence aside.

To compute b2, we again need to take the limit |x1| À 1 and |x2| À 1. This is

equivalent to t1 À 1 and t2 À 1. In this case, we use the asymptotic expansion of Bessel

function when x1 and x2 are large in (4.3) and (4.8). Multiply (4.3) and (4.8), and integrate

out τ ≡ t1 − t2, we will get the dependence on x = beQt

Q , t = 1
2(t1 + t2). The relevant

integral is

−iVb2 =

∫

0

∞ dc

πR′
2v2e2Qt

∫ ∞

−∞
dτGi(t1, t2)[G+(t2, t1) +G−(t2, t1)]

∼
∫

0

∞ dc

πR′

∫

0

∞
dτ
θ(t1 − t2)v2

b2
{i coth(

πc′

2
)[cos(2x2) +

1

2
sin(2x1 + 2x2)

+
1

2
sin(2x1 − 2x2)]− [1− sin(2x2) + sin(2x1)

−1

2
cos(2x1 − 2x2) +

1

2
cos(2x1 + 2x2)]}+ (t1 ↔ t2)

∼
∫

0

∞ dc′

πR′
v2

b2
{iπ coth(

πc′

2
)[I0(4x) − L0(4x)]−

∫ ∞

−∞
Qdτ + 2K0(4x)}. (4.11)

Considering x1 À 1, and x2 À 1, The trigonometric functions with argument x1, x2, and

2x1 + 2x2 fluctuate quickly in the x À 1 limit, they average to zero and hence can be

omitted. The term
∫∞
−∞Qdτ seems to be divergent. However, remember the limit we are

taking here, t1, t2 À 1, and t fixed, so the range of both t1 and t2 is proportional to t. Then

the range of τ = t1 − t2 is also proportional to t, and the term proportional to
∫∞
−∞Qdτ is

finite and increases with t.

To calculate f2, we will need the fermionic propagator, defined by Gα,β(t1, t2) ≡
〈Tθ+(t1)θT−(t2)〉αβ . It satisfies the following differential equation,

[i∂t1 + beQt1γ2 + cγ9]Gα,β(t1, t2) = −iδα,βδ(t1 − t2). (4.12)

The propagator is related to the heat kernel Kαβ(t2, t1; s) roughly by Gα,β(t1, t2) =
∫

0
∞
ds×

Kαβ(t2, t1; s). But there is some subtly in determining the time ordering in each term. This

is related to the boundary conditions. We are not going to solve the problem in this way.

Instead, we take the b → 0 limit. The limiting case will be the propagator for massive

fermions, which will be analyzed in appendix A. When b → 0, the argument of the

Whittaker function is small. We will have

Mλ,µ(z) ∼ zµ+ 1
2 e−

z
2 . (4.13)

We determine the time ordered propagator by comparing its small b limit with the propa-

gator of a massive fermion in appendix A, consequently

G11(t1, t2) = (4i
√
x1x2)−1[θ(t1 − t2)M−1/2,−ic′(−2ix2)M1/2,ic′(−2ix1)
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−θ(t2 − t1)M−1/2,ic′(−2ix2)M1/2,−ic′(−2ix1)]

G22(t1, t2) = (4i
√
x1x2)−1[θ(t1 − t2)M1/2,−ic′(−2ix2)M−1/2,ic′(−2ix1)

−θ(t2 − t1)M1/2,ic′(−2ix2)M−1/2,−ic′(−2ix1)]

G12(t1, t2) = (4i
√
x1x2)−1[θ(t1 − t2)M1/2,−ic′(−2ix2)M1/2,ic′(−2ix1)

+θ(t2 − t1)M1/2,ic′(−2ix2)M1/2,−ic′(−2ix1)]

G21(t1, t2) = (4i
√
x1x2)−1[θ(t1 − t2)M−1/2,−ic′(−2ix2)M−1/2,ic′(−2ix1)

+θ(t2 − t1)M−1/2,ic′(−2ix2)M−1/2,−ic′(−2ix1)]. (4.14)

Again let b/(Q) to be of order 1, and take the t1,2 À 1 limit also, we will get a finite

integral with respect to both τ . In the following, we will need to use the asymptotical

expansion of Whittaker function at large argument.

M 1
2
,±ic′(−2ix) ∼ Γ(±2ic′ + 1)

Γ(±ic′ + 1)
exp(∓πc′ + ix)

√
−2ix

M− 1
2
,±ic′(−2ix) ∼ Γ(±2ic′ + 1)

Γ(±ic′ + 1)
exp(−ix)

√
−2ix. (4.15)

Then

Tr[γ1Gf (t1, t2)γ1Gf (t2, t1)] = [G11(t2, t1)G22(t1, t2) +G22(t2, t1)G11(t1, t2)

−G12(t1, t2)G12(t2, t1)−G21(t1, t2)G21(t2, t1)]

= (8x1x2)−1θ(t1 − t2)[M2
−1/2,−ic′(−2ix2)M2

1/2,ic′(−2ix1)

+M2
1/2,−ic′(−2ix2)M2

−1/2,ic′(−2ix1)] + (t1 ↔ t2)

∼ −cosh(2ix2 − 2ix1 + 2πc′)

cosh2(πc′)
(4.16)

The fermionic contribution to the effective potential is thus

−iVf ≡
∫

0

∞ dc

πR′

∫ ∞

−∞
dτ8v2e2Qt(t2 − τ2

4
) Tr[γ1Gf (t1, t2)γ1Gf (t2, t1)]

∼
∫

0

∞ 8dc′

πR′
{−v

2e2Qt cosh(2πc′)

cosh2(πc′)
K0(x)[4t2 − π2

Q2
]

− i2πv
2t2e2Qt sinh(2πc′)

cosh2(πc′)
[I0(4x) − L0(4x)]} (4.17)

From (4.10), (4.11), and (4.17) we see that the effective potential proportional to v2

does not vanish. The late time potential contains both a real part and an imaginary

part. In the following, when we use “proportional to”, we mean that we ignore some

numerical coefficient, including the the integral of c′. The leading real part comes from the

bosons, (4.10), proportional to −Qv
2t2eQt

b . It increases with t. The leading imaginary part

also comes from the bosonic part, (4.11), proportional to −i v2

b2

∫∞
−∞Qdτ . This term is finite

and increases as t as we have explained following eq. (4.11). We may also pay attention

to the subleading terms, which are finite, and may have some physical significance. The

subleading imaginary part comes from the fermionic contribution, which is proportional to
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−iv2t2e2QtK0(4x) ∼ −iv2t2e2Qtq
beQt

Q

e
−4eQt

Q . The subleading real contribution comes also from the

fermionic contribution, which is proportional to v2t2e2Qt[I0(4x)−L0(4x)] ∼ v2t2e2Qtq
beQt

Q

e
−4eQt

Q .

Both the real part and the imaginary part of the effective potential are proportional to

positive power of Q, so when Q→ 0, both vanish. The subleading effective potential also

vanish as t→∞.

5. Conclusion and discussions

We study the effective potential between two D0-branes in a time-dependent matrix theory

at the one loop level. When the two D0-branes have no relative motion in the comoving

coordinates, we find that there is no effective potential. This result is expected if there is

supersymmetry, thanks to the cancelation between bosons and fermions. What is surprising

is that there is no supersymmetry in our case. The bosonic and fermionic phase shifts are

both divergent but do not dependent on the physical parameter, the seperation b. So upon

suitable regularization, they are both zero.

When we consider the case when v 6= 0, the exact form of the effective potential is

not calculated because of the integrand is too complicated. Too see that the potential is

non-trivial, we examined the behavior of the potential in later times. The v2 corrections

do not cancel in one loop calculation. Moreover, there exists an imaginary part in addition

to a real part. This result seems to contradict with our supergravity calculation. When we

compactify the X9 direction, we get a type IIA string theory with string coupling constant

gs = e−Qt, and the effective 10 dimensional gravitational constant is κ2 ∝ g2
s = e−2Qt.

Supergravity loop expansion is in terms of gravitational constant. But we see no sign

of this expansion in matrix calculation. Furthermore, the imaginary part of the effective

potential may imply an instability of the 2 D0-brane system. As the two D0-branes move

apart in the comoving coordinates, certain modes in the two D0-brane system become

tachyonic, and the imaginary part just signals creation of these modes.
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A. Perturbation in flat background

When the background is flat, BFSS matrix model has been tested to two loops. Here we

will use our perturbation method to repeat the result to one loop order. Set b = 0 and

Q = 0, we just return to the situation investigated by [14]. The v = 0 case is similar. The

determinants we are going to compute becomes

det10(−∂2
t − c2) for Y µ

1,2, µ = 1, . . . 9 and A1,2,
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det−2(−∂2
t − c2) for C1,2,

det−8(i∂t + cγ9) for θ+. (A.1)

The propagators are Gb(t, t
′) = − 1

2ce
ic|t−t′| for all the bosons and the ghosts. For the

fermions,

G11(t, t′) = G22(t, t′) = −ε(t− t′)eic|t−t′|,
G12(t, t′) = G21(t, t′) = −1

2
eic|t−t

′|, (A.2)

where ε(t− t′) = 1
2 [θ(t− t′)− θ(t′ − t)]. For the v 6= 0 case, we need

b1 = −i
∫ ∞

−∞
dt

1

2
v2t2[〈Y µ

1 (t)Y µ
1 (t)〉+ 〈Y µ

2 (t)Y µ
2 (t)〉

+〈A1(t)A1(t)〉+ 〈A2(t)A2(t)〉],

g1 = i

∫ ∞

−∞
dtv2t2[〈C1(t)C∗1 (t)〉+ 〈C2(t)C∗2 (t)〉],

b2 = −
∫ ∞

−∞

∫ ∞

−∞
dt1dt2v

2{〈A1(t1)A1(t2)〉〈Y2
1(t1)Y2

1(t2)〉

+〈A2(t1)A2(t2)〉〈Y1
1(t1)Y1

1(t2)〉},

f2 =
1

2

∫ ∞

−∞

∫ ∞

−∞
dt1dt2v

2t1t2 × 8Tr[γ1Gf (t1, t2)γ1Gf (t2, t1)]. (A.3)

In order to get the effective action, we do not need to perform all the integrals. Define

t = t1+t2
2 τ = t1 − t2, integrate out τ , and sum over all terms above, we will get the

effective potential before the smearing:

b1 = i

∫ ∞

−∞
dtv2t2

5

c
,

g1 = −i
∫ ∞

−∞
dtv2t2

1

c
,

b2 = −i
∫ ∞

−∞
dtv2 1

2c3
,

f2 = −i
∫ ∞

−∞
dtv2(

4t2

c
− 1

2c3
). (A.4)

The various factors comes from the counting of degree of freedom. They sum up to zero.

So there is no v2 term in the effective action.

B. The proof of an identity

Here we will give the proof of the following identity

D(c, z) ≡M1/2,ic(z)M−1/2,−ic(z) +M1/2,−ic(z)M−1/2,ic(z) = 2z, (B.1)

where z is pure imaginary. In the following, we will treat D(c, z) as a function of c, and

view z as a parameter. Using the steepest descendent method, we can get the large |c|

– 16 –
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behavior of Whittaker function, M 1
2
,±ic(z) ∼ z

1
2
±ic,M− 1

2
,±ic(z) ∼ z

1
2
±ic, when |c| → ∞. So

lim|c|→∞D(c, z) ∼ 2z. Using Mλ,µ(z) = e−z/2zµ+ 1
2 Φ(µ− λ+ 1

2 , 2µ+ 1; z), and the relation

Φ(α, γ; z) = ezΦ(α− γ, γ;−z), we can write D(c, z) in terms of Φ as

D(c, z) = z[Φ(ic, 2ic + 1; z)Φ(−ic,−2ic + 1;−z) + Φ(ic, 2ic + 1;−z)Φ(−ic,−2ic + 1; z)].

(B.2)

Φ(α, γ; z) as a function of γ has single poles at γ = −n, and analytic elsewhere. Near

the pole, lim2ic+1→−n Φ(ic, 2ic + 1; z) ∼ (−1)n

n!(2ic+1+n) ( 1
2(n− 1)n+ 1 ) zn+1Φ(n+1

2 , n + 2; z),

where

( 1
2(n− 1)n+ 1 ) ≡ 1

2
(n− 1)[

1

2
(n− 1)− 1] · · · [ 1

2
(n− 1)− n]/[(n+ 1)!].

If n is odd, the above is zero, so the potential poles in the upper half plane are at 2ic+ 1 =

−2n. However,

lim
2ic+1→−2n

D(c, z)

=
z

(2n)!(2ic + 1 + 2n)
( 1

2(2n− 1)2n+ 1 ) Φ(
2n+ 1

2
, 2n+ 2; z)Φ(

2n + 1

2
, 2n+ 2;−z)

×[z2n+1 + (−z)2n+1] = 0. (B.3)

The same phenomenon happens when 2ic + 1 → 2n. Thus D(c, z) is analytic in

the complex plane as a function of c. Since D(c, z) approaches to 2z as the |c| → ∞,

D(c, z) = 2z by Cauthy integral formula.
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